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Problem: Your opponent bid ¢ coins, and you have n coins. You get your opponent’s cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding ¢ + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding ¢, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: ... submissions, ... accepted, ... unknown
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Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

X

x+y*
Running time: O(1), but even O(d) will pass.

= Then just compute

Pitfall: Values are larger than 10°, do not use 32-bit int.

Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: ... submissions, ... accepted, ... unknown
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operation = O(n?) running time.
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unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation = O(n?) running time.

String operations are extremely optimized, so in practice this often still passes.
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However:

Statistics: ...

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

O(n).

Modifying the sequences themselves by removing characters from the strings can be
unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation = O(n?) running time.

String operations are extremely optimized, so in practice this often still passes.

submissions, ... accepted, ... unknown
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: The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with

a zeroes and b ones, the expected gain is (a — b)/2.
: Repeatedly choose the string that maximizes expected gain.

: To find this, calculate all prefix sums of expected gains, and take the largest increase.
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Repeatedly randomize a consecutive string of bits until at least 70% are 1.
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Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.
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Problem:

Observation:

Solution:
Implementation:

Pitfall:

Running time:

Repeatedly randomize a consecutive string of bits until at least 70% are 1.

The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with
a zeroes and b ones, the expected gain is (a — b)/2.

Repeatedly choose the string that maximizes expected gain.
To find this, calculate all prefix sums of expected gains, and take the largest increase.

Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.

O(nq) for g commands.
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Problem author: Ragnar Groot Koerkamp

Statistical analysis: Out of 100000 runs, the highest number of commands used is 106.

Lowest number of commands is 34.
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Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
Issue: Take some spanning tree. What about unused edges?

Fix: Make valid tree by adding an extra person for each unused edge.
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Therefore, we need to find a node that can reach all other nodes.
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Problem author: Lammert Westerdijk

Problem:

Naive solution:
Issue:

Fix:

Solution:

Issue:

Determine whether everyone can have the same ancestor.

Jeroen
B Leon
Marijn

Output possible if some node reaches all other nodes, and impossible otherwise.
Take some spanning tree. What about unused edges?

Make valid tree by adding an extra person for each unused edge.

Therefore, we need to find a node that can reach all other nodes.

n = 10°, so we need an O(n)-time solution.
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Solution:

Loop through all nodes, and run a DFS if not yet visited.
Once we reach a “good” node, all nodes are marked as visited.
If a “good"” node exists, the last node where we started a DFS is “good”.
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Check whether this is true using a DFS, starting from this last node.
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Running time: O(n).
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I: Ingredient Intervals

Problem author: Mike de Vries

Problem: There is a sequence of real numbers a = (a1,...,a,) with a; +--- + a, = 100 and
a1 > --- > a, > 0. Given a subset {a;}ics of these numbers, determine maximal lower
bounds h, ..., I, and minimal upper bounds ri,..., r, such that

Fh<a<r forl1<i<n.

E.g., with a=(60,7,7,5,7):
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I: Ingredient Intervals

Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that a; satisfies /| < a < r/ with

i =max{aj:j>ij€S} ri=min{a:j<ijeS}.

spam | | ap = 60
egg ‘ l 5 < a <60
sausage ‘ | 5 < a3 <60

bacon I:I as =5

tomato I:] 0<a <5
Implementation: These values can be computed in linear time by first computing
prev(i) =max{j € S: j < i}, next(i) =max{j € S:j>1i},

preferably with useful boundary values, for instance by introducing ap = 100 and
ant1 = 0. Then, for i ¢ S we have [[ = a; with j = next(i) because a is decreasing.
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Problem author: Mike de Vries

Fix upper bounds: For i ¢ S, the (unknown) amount a; satisfies /| < a; < r/, but we know more:
Assuming all other amounts attain their lower bound, then their sum cannot
exceed 100, so we have the constraint

(Z max(ar, /j’)> +ai+ Z I/ <100,
i<i J>i

Can solve for the largest a;.

spam | | a; =60

egg | | 2> < 30, because 60 + 30 + 5 + 5 = 100
sausage|  ]a3 <173, because 60 + 175 + 173 + 5 = 100

bacon I:I as =5
tomato D as <5

Implementation: To determine max a;, use binary search in the interval [//, r/] or rewrite the constraint

for closed formula.
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Fix lower bounds: Symmetrically, assuming all other amounts attain their maximum bound, then their
sum must be at least 100, so we have the constraint

(Z rf) + a; + Z min(a;, rj') > 100,
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Condition: Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Reduction: Take the edge complement, we need to partition the graph into two independent sets
of size k.

Condition: Each connected component needs to be bipartite.

Reduction: Let component i have parts of size a; and b;. We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T[j][s] be 1 if we can pick one of each tuple 1,...,/ and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T[j][s] =1 if either T[j — 1][s —aj]=1or T[j —1][s — bj] = 1.
Running time: O(n?) = O(m).
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Statistics: ...
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Start with the convex hull, and simply verify whether this is a solution.

If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!
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Problem:
Subproblem 1:
Subproblem 2:

Observation:
Observation:
Edge case:

Possible solution:

Reorder a string to form a syntactically valid expression without redundant parentheses.
Create variables and numbers out of letters and digits.

Join these with operators and parentheses such that no parentheses are redundant.

If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
We need at least k + 1 letters/digits.

If we have only zeros, we need exactly k + 1 of them.

Create k numbers/variables using single characters, starting with zeros. Put the
remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd — 0, 0, 1, 2, dcba3
000000001 — 0, 0, 0, 0, 10000
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Observation: Since each operator can have at most one parent, and has two children, if there are M
multiplication operators and P plus operators, we can place no more than 2M or A
pairs of non-redundant parentheses.

Solution: Greedily construct as many (_+_)*(_+_) patterns as possible, use (_+_)*_to get rid of
a single pair of parentheses, and put all remaining operators at the end.
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Jury work
= 440 commits (last year: 505)
= 802 secret test cases (last year: 1228) (= 67 per problem!)
= 221 jury + proofreader solutions (last year: 236)

= The minimum! number of lines the jury needed to solve all problems is
44246+1+4+114+3+2+5+2+1+7=148

On average 4 lines per problem, down from 16% in last year's preliminaries?

lWith mostly™ PEP 8-compliant code golfing
2But we did way less golfing last year
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Arnoud van der Leer Ilvan Fefer

Dany Sluijk Jeroen Op de Beek
Geertje Ulijn Jonas van der Schaaf
Jaap Eldering Lammert Westerdijk
Kevin Verbeek Leon van der Waal
Michael Zindorf Maarten Sijm

Pavel Kunyavskiy K Kotlin Hero @ Marijn Adriaanse
Tobias Roehr @ Mike de Vries
Thomas Verwoerd Ragnar Groot Koerkamp
Wendy Yi @ Reinier Schmiermann

Thore Husfeldt
Wietze Koops

Want to join the jury? Submit to the Call for Problems of BAPC 2026 at:

https://jury.bapc.eu/
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