Benelux Algorithm Programming Contest (BAPC) preliminaries 2025

Solutions presentation

The BAPC 2025 Jury
October 4, 2025

K: Koehandel

Problem author: Mike de Vries

Problem: Your opponent bid ¢ coins, and you have n coins. You get your opponent’s cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid ¢ coins, and you have n coins. You get your opponent’s cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.

What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding ¢ + 1, which is optimal.

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid ¢ coins, and you have n coins. You get your opponent’s cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding ¢ + 1, which is optimal.

Case 2: n = c. You can keep your cow by bidding ¢, which is optimal.

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid ¢ coins, and you have n coins. You get your opponent’s cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding ¢ + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding ¢, which is optimal.

Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

K: Koehandel
Problem author: Mike de Vries

Problem:

Case 1:
Case 2:
Case 3:
Complexity:

Your opponent bid ¢ coins, and you have n coins. You get your opponent's cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.

What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

n > c. You can obtain your opponent’s cow by bidding ¢ + 1, which is optimal.
n = c. You can keep your cow by bidding ¢, which is optimal.

n < c. You will always lose your cow, so bidding 0 is optimal.
0o(1).

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid ¢ coins, and you have n coins. You get your opponent’s cow when
bidding more than ¢ coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding ¢ + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding ¢, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: ... submissions, ... accepted, ... unknown

D: Dralinpome

Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

D: Dralinpome

Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.

D: Dralinpome

Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.

Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

D: Dralinpome

Problem author: Mike de Vries

Problem:

Observation:
Exception:

Solution:

Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Palindromes are mirrored words, so each letter must occur an even number of times.
If the length of the word is odd, the middle letter can occur an odd number of times.

Count the number of occurrences of each letter and check whether they are all even,

with at most one odd one out.

D: Dralinpome

Problem author: Mike de Vries

Problem:

Observation:
Exception:

Solution:

Running time:

Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Palindromes are mirrored words, so each letter must occur an even number of times.
If the length of the word is odd, the middle letter can occur an odd number of times.

Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

O(n).

D: Dralinpome

Problem author: Mike de Vries

Problem:

Observation:
Exception:

Solution:

Running time:

Easter egg:

Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Palindromes are mirrored words, so each letter must occur an even number of times.
If the length of the word is odd, the middle letter can occur an odd number of times.

Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

O(n).

Can you find all the dralinpomes in the problem statement?

D: Dralinpome

Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).

Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: ... submissions, ... accepted, ... unknown

B: Bottle of New Port

Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

X

= Then just compute -

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

X

= Then just compute -

Running time: O(1), but even O(d) will pass.

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

X

= Then just compute -

Running time: O(1), but even O(d) will pass.
Pitfall: Values are larger than 10°, do not use 32-bit int.

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

X

= Then just compute -

Running time: O(1), but even O(d) will pass.
Pitfall: Values are larger than 10°, do not use 32-bit int.

Pitfall: Many teams forgot the max function, which fails on the fourth sample.

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: = The amount of alcohol left is x = max(a — d - A,, 0).
= For other liquids, it is y = max(o — d - A, 0).

X

x+y*
Running time: O(1), but even O(d) will pass.

= Then just compute

Pitfall: Values are larger than 10°, do not use 32-bit int.

Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: ... submissions, ... accepted, ... unknown

H: Hidden Sequence

Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

H: Hidden Sequence

Problem author: Mike de Vries

Problem:

Observation:

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two

sequences, and iterate.

H: Hidden Sequence

Problem author: Mike de Vries

Problem:

Observation:

Solution:

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

H: Hidden Sequence

Problem author: Mike de Vries

Problem:

Observation:

Solution:

Running time:

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

O(n).

H: Hidden Sequence

Problem author: Mike de Vries

Problem:

Observation:

Solution:

Running time:
Pitfall:

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

O(n).
Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation = O(n?) running time.

H: Hidden Sequence

Problem author: Mike de Vries

Problem:

Observation:

Solution:

Running time:
Pitfall:

However:

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

O(n).

Modifying the sequences themselves by removing characters from the strings can be
unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation = O(n?) running time.

String operations are extremely optimized, so in practice this often still passes.

H: Hidden Sequence

Problem author: Mike de Vries

Problem:

Observation:

Solution:

Running time:
Pitfall:

However:

Statistics: ...

Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

O(n).

Modifying the sequences themselves by removing characters from the strings can be
unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation = O(n?) running time.

String operations are extremely optimized, so in practice this often still passes.

submissions, ... accepted, ... unknown

J: Journal Publication

Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

J: Journal Publication

Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed
by the previous name part.

J: Journal Publication

Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed
by the previous name part.

Solution: For each author in order, determine the appropriate name part in linear time with a
running minimum.

J: Journal Publication

Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed
by the previous name part.

Solution: For each author in order, determine the appropriate name part in linear time with a
running minimum.

Running time: Linear in the total size of the input.

J: Journal Publication

Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed
by the previous name part.

Solution: For each author in order, determine the appropriate name part in linear time with a
running minimum.

Running time: Linear in the total size of the input.

Statistics: ... submissions, ... accepted, ... unknown

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.

Observation: The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with
a zeroes and b ones, the expected gain is (a — b)/2.

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Problem:

Observation:

Solution:

Repeatedly randomize a consecutive string of bits until at least 70% are 1.

The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with
a zeroes and b ones, the expected gain is (a — b)/2.

Repeatedly choose the string that maximizes expected gain.

E: Entropy E

vasion

Problem author: Ragnar Groot Koerkamp

Problem

Observation

Solution

Implementation

: Repeatedly randomize a consecutive string of bits until at least 70% are 1.

: The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with

a zeroes and b ones, the expected gain is (a — b)/2.
: Repeatedly choose the string that maximizes expected gain.

: To find this, calculate all prefix sums of expected gains, and take the largest increase.

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Problem:

Observation:

Solution:
Implementation:

Pitfall:

Repeatedly randomize a consecutive string of bits until at least 70% are 1.

The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with
a zeroes and b ones, the expected gain is (a — b)/2.

Repeatedly choose the string that maximizes expected gain.
To find this, calculate all prefix sums of expected gains, and take the largest increase.

Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Problem:

Observation:

Solution:
Implementation:

Pitfall:

Running time:

Repeatedly randomize a consecutive string of bits until at least 70% are 1.

The expected gain of a 0 is % and that of a 1 is —%. So when we choose a string with
a zeroes and b ones, the expected gain is (a — b)/2.

Repeatedly choose the string that maximizes expected gain.
To find this, calculate all prefix sums of expected gains, and take the largest increase.

Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.

O(nq) for g commands.

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Statistical analysis: Out of 100000 runs, the highest number of commands used is 106.

Lowest number of commands is 34.
““ll‘llll = 0 Ha

H

5

¥ H

n
-
1
—
—

- —
—
—
—
——
————
————
—
———————————
—

< ——
———————————————— ™
1
]
—
]
—————————
]
————————————
S

| ——————————
——————
I ———
———
——
———
—
—
—
—

5 —
—
—
]
-
-
N
u

E: Entropy Evasion

Problem author: Ragnar Groot Koerkamp

Statistical analysis: Out of 100000 runs, the highest number of commands used is 106.

Lowest number of commands is 34.
““ll‘llll = 0 Ha

Statistics: ... submissions, ... accepted, ... unknown

H

5

H H H

n
-
1
—
—

- —
—
—
—
——
————
————
—
———————————
—

< ——
———————————————— ™
1
]
—
]
—————————
]
————————————
S

| ——————————
——————
I ———
———
——
———
—
—
—
—

5 —
—
—
]
-
-
N
u

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Initial idea: This is a graph problem.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.
Initial idea: This is a graph problem.

Naive solution: Make a directed graph. If Ais a son of B, add a directed edge from B to A.

Jeroen

AN®

Marijn

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.
Initial idea: This is a graph problem.

Naive solution: Make a directed graph. If Ais a son of B, add a directed edge from B to A.

Jeroen
B Leon
Marijn

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Jeroen
B Leon
Marijn

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Jeroen
B Leon
Marijn

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

Issue: Take some spanning tree. What about unused edges?

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

N Jeroen
Marijn
Marijn
Jeroen Leon
Leon

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
Issue: Take some spanning tree. What about unused edges?

Fix: Make valid tree by adding an extra person for each unused edge.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem:

Naive solution:
Issue:
Fix:

Solution:

Determine whether everyone can have the same ancestor.

Jeroen
B Leon
Marijn

Output possible if some node reaches all other nodes, and impossible otherwise.
Take some spanning tree. What about unused edges?
Make valid tree by adding an extra person for each unused edge.

Therefore, we need to find a node that can reach all other nodes.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Problem:

Naive solution:
Issue:

Fix:

Solution:

Issue:

Determine whether everyone can have the same ancestor.

Jeroen
B Leon
Marijn

Output possible if some node reaches all other nodes, and impossible otherwise.
Take some spanning tree. What about unused edges?

Make valid tree by adding an extra person for each unused edge.

Therefore, we need to find a node that can reach all other nodes.

n = 10°, so we need an O(n)-time solution.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

Jeroen

AN®

Marijn

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

Jeroen

IN®

Marijn (1)

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

Jeroen

INOH

Marijn (1)

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution:

Loop through all nodes, and run a DFS if not yet visited.
Once we reach a “good” node, all nodes are marked as visited.
If a “good"” node exists, the last node where we started a DFS is “good”.

Jeroen
B Leon (
Marijn (1)

Check whether this is true using a DFS, starting from this last node.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

Jeroen
& Leon (
Marijn (1)

= Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

Jeroen
& Leon (
Marijn (1)

= Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

G: Genealogy Gumbo

Problem author: Lammert Westerdijk

Solution: = Loop through all nodes, and run a DFS if not yet visited.
= Once we reach a “good” node, all nodes are marked as visited.
= If a “good” node exists, the last node where we started a DFS is “good”.

Jeroen
& Leon (
Marijn (1)

= Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: ... submissions, ... accepted, ... unknown

I: Ingredient Intervals

Problem author: Mike de Vries

Problem: There is a sequence of real numbers a = (a1,...,a,) with a; +--- + a, = 100 and
a1 > --- > a, > 0. Given a subset {a;}ics of these numbers, determine maximal lower
bounds h, ..., I, and minimal upper bounds ri,..., r, such that

Fh<a<r forl1<i<n.

E.g., with a=(60,7,7,5,7):

spam | 60

€geg

sausage

bacon I:I 5

tomato

I: Ingredient Intervals

Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that a; satisfies /| < a < r/ with

i =max{aj:j>ij€S} ri=min{a:j<ijeS}.

spam | | a; =60
egg ‘ ' 5 < a <60
sausage ‘ | 5 < a3 <60

bacon I:I as =5

tomatol:log as <5

I: Ingredient Intervals

Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that a; satisfies /| < a < r/ with

i =max{aj:j>ij€S} ri=min{a:j<ijeS}.

spam | | ap = 60
egg ‘ l 5 < a <60
sausage ‘ | 5 < a3 <60

bacon I:I as =5

tomato I:] 0<a <5
Implementation: These values can be computed in linear time by first computing
prev(i) =max{j € S: j < i}, next(i) =max{j € S:j>1i},

preferably with useful boundary values, for instance by introducing ap = 100 and
ant1 = 0. Then, for i ¢ S we have [[= a; with j = next(i) because a is decreasing.

I: Ingredient Intervals

Problem author: Mike de Vries

Fix upper bounds: For i ¢ S, the (unknown) amount a; satisfies /| < a; < r/, but we know more:
Assuming all other amounts attain their lower bound, then their sum cannot
exceed 100, so we have the constraint

(Z max(ar, /j’)> +ai+ Z I/ <100,
i<i J>i

Can solve for the largest a;.

spam | | a; =60

egg | | 2> < 30, because 60 + 30 + 5 + 5 = 100
sausage|]a3 <173, because 60 + 175 + 173 + 5 = 100

bacon I:I as =5
tomato D as <5

I: Ingredient Intervals

Problem author: Mike de Vries

Fix upper bounds: For i ¢ S, the (unknown) amount a; satisfies /| < a; < r/, but we know more:
Assuming all other amounts attain their lower bound, then their sum cannot
exceed 100, so we have the constraint

(Z max(ar, /j’)> +ai+ Z I/ <100,
i<i J>i

Can solve for the largest a;.

spam | | a; =60

egg | | 2> < 30, because 60 + 30 + 5 + 5 = 100
sausage|]a3 <173, because 60 + 175 + 173 + 5 = 100

bacon I:I as =5
tomato D as <5

Implementation: To determine max a;, use binary search in the interval [//, r/] or rewrite the constraint

for closed formula.

I: Ingredient Intervals

Problem author: Mike de Vries

Fix lower bounds: Symmetrically, assuming all other amounts attain their maximum bound, then their
sum must be at least 100, so we have the constraint

(Z rf) + a; + Z min(a;, rj') > 100,
j<i J>i

Can solve for the smallest a;.

spam | | a; = 60
egg | | 15 < & because 60 + 15 + 15 + 5 + 5 = 100
sausage‘ ‘

bacon I:I as =5
tomato D

I: Ingredient Intervals

Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

I: Ingredient Intervals

Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:

spam | a; =60

egg | |15 < 2 <30

bacon I:I a3 =5

tomatoI:] 0<a <5

I: Ingredient Intervals

Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:

spam | a; =60

egg | |15 < 2 <30

bacon I:I a3 =5

tomatoI:] 0<a <5

Running time: O(n2 Iog(IOO/s)) using binary search.
With precomputing next and prev and solving the constraints: O(n).

I: Ingredient Intervals

Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:

spam | a; =60

egg | |15 < 2 <30

bacon I:I a3 =5

tomatoI:] 0<a <5

Running time: O(n2 Iog(IOO/s)) using binary search.
With precomputing next and prev and solving the constraints: O(n).

Statistics: ... submissions, ... accepted, ... unknown

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming]!

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming]!

= Define d[i] as the optimal value if the musical piece ended after i notes.

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming]!

= Define d[i] as the optimal value if the musical piece ended after i notes.
= Base Case: Let d[0] = co.

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.
Solution: Dynamic Programming]!
= Define d[i] as the optimal value if the musical piece ended after i notes.
= Base Case: Let d[0] = co.
= Recursion: To calculate d[i]: for j =1i,...,1, keep track of the range of possible
transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d[i] is the maximal value of min{d[j —1],i — j + 1} of each j with
non-empty transposal range.

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.
Solution: Dynamic Programming]!
= Define d[i] as the optimal value if the musical piece ended after i notes.
= Base Case: Let d[0] = co.
= Recursion: To calculate d[i]: for j =1i,...,1, keep track of the range of possible
transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d[i] is the maximal value of min{d[j —1],i — j + 1} of each j with
non-empty transposal range.

Running time: O(n?).

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.
Solution: Dynamic Programming!
= Define d[i] as the optimal value if the musical piece ended after i notes.
= Base Case: Let d[0] = co.
= Recursion: To calculate d[i]: for j =1i,...,1, keep track of the range of possible
transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d[i] is the maximal value of min{d[j —1],i — j + 1} of each j with
non-empty transposal range.
Running time: O(n?).

Fun fact: O(nlog n) is possible with segment trees, or with binary search on the answer.

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.
Solution: Dynamic Programming!
= Define d[i] as the optimal value if the musical piece ended after i notes.
= Base Case: Let d[0] = co.
= Recursion: To calculate d[i]: for j =1i,...,1, keep track of the range of possible
transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d[i] is the maximal value of min{d[j —1],i — j + 1} of each j with
non-empty transposal range.
Running time: O(n?).
Fun fact: O(nlog n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

A: Alto Adaptation

Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.
Solution: Dynamic Programming!
= Define d[i] as the optimal value if the musical piece ended after i notes.
= Base Case: Let d[0] = co.
= Recursion: To calculate d[i]: for j =1i,...,1, keep track of the range of possible
transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d[i] is the maximal value of min{d[j —1],i — j + 1} of each j with
non-empty transposal range.
Running time: O(n?).
Fun fact: O(nlog n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: ... submissions, ... accepted, ... unknown

F: Friendly Formation

Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.

F: Friendly Formation

Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.

Condition: Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

F: Friendly Formation

Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.

F: Friendly Formation

Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Reduction: Take the edge complement, we need to partition the graph into two independent sets
of size k.

Condition: Each connected component needs to be bipartite.

F: Friendly Formation

Problem author: Tobias Roehr

Problem:
Condition:

Reduction:

Condition:

Reduction:

Partition a graph into two equally sized cliques.

Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Take the edge complement, we need to partition the graph into two independent sets
of size k.

Each connected component needs to be bipartite.

Let component i have parts of size a; and b;. We need to pick one of each tuple and

end up with a total of exactly k.

F: Friendly Formation

Problem author: Tobias Roehr

Problem:
Condition:

Reduction:

Condition:

Reduction:

Solution:

Partition a graph into two equally sized cliques.
Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Take the edge complement, we need to partition the graph into two independent sets
of size k.

Each connected component needs to be bipartite.

Let component i have parts of size a; and b;. We need to pick one of each tuple and

end up with a total of exactly k.

Knapsack dynamic programming!

F: Friendly Formation

Problem author: Tobias Roehr

Problem:
Condition:

Reduction:

Condition:

Reduction:

Solution:

Variables:

Partition a graph into two equally sized cliques.
Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Take the edge complement, we need to partition the graph into two independent sets
of size k.

Each connected component needs to be bipartite.

Let component i have parts of size a; and b;. We need to pick one of each tuple and
end up with a total of exactly k.

Knapsack dynamic programming!

Let T[j][s] be 1 if we can pick one of each tuple 1,...,j and end up with a total of
exactly s, and 0 otherwise.

F: Friendly Formation

Problem author: Tobias Roehr

Problem:
Condition:

Reduction:

Condition:

Reduction:

Solution:

Variables:

Recursion:

Partition a graph into two equally sized cliques.

Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Take the edge complement, we need to partition the graph into two independent sets
of size k.

Each connected component needs to be bipartite.

Let component i have parts of size a; and b;. We need to pick one of each tuple and
end up with a total of exactly k.

Knapsack dynamic programming!

Let T[j][s] be 1 if we can pick one of each tuple 1,...,j and end up with a total of

exactly s, and 0 otherwise.

We have T[j][s] =1 if either T[j —1][s—aj]=1or T[j — 1][s — bj] = 1.

F: Friendly Formation

Problem author: Tobias Roehr

Problem:
Condition:

Reduction:

Condition:

Reduction:

Solution:

Variables:

Recursion:

Running time:

Partition a graph into two equally sized cliques.
Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Take the edge complement, we need to partition the graph into two independent sets
of size k.

Each connected component needs to be bipartite.

Let component i have parts of size a; and b;. We need to pick one of each tuple and

end up with a total of exactly k.
Knapsack dynamic programming!

Let T[j][s] be 1 if we can pick one of each tuple 1,...,j and end up with a total of
exactly s, and 0 otherwise.

We have T[j][s] =1 if either T[j —1][s—aj]=1or T[j — 1][s — bj] = 1.
O(n*) = O(m).

F: Friendly Formation

Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m > k(k — 1), which gives n < 2(y/m + 1) < 2002.

Reduction: Take the edge complement, we need to partition the graph into two independent sets
of size k.

Condition: Each connected component needs to be bipartite.

Reduction: Let component i have parts of size a; and b;. We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T[j][s] be 1 if we can pick one of each tuple 1,...,/ and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T[j][s] =1 if either T[j — 1][s —aj]=1or T[j —1][s — bj] = 1.
Running time: O(n?) = O(m).

Statistics: ... submissions, ... accepted, ... unknown

L: Landgrave

Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

L: Landgrave

Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.

L: Landgrave

Problem author: Lammert Westerdijk

Problem:

Idea:

Observation:

Connect some of the given points in a cycle to create a polygon with all interior angles

at least 90 degrees.
Start with the convex hull, and simply verify whether this is a solution.

If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

L: Landgrave

Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.

Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

5

L: Landgrave

Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.

Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

8
o

L: Landgrave

Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.

Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

Running time: Need O(nlogn) convex hull algorithm to get O(n? log n). Cubic is too slow.

L: Landgrave

Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.

Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

Running time: Need O(nlogn) convex hull algorithm to get O(n? log n). Cubic is too slow.

Bonus: With monotone chain convex hull algorithm, after O(nlog n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n?) total time.

L: Landgrave

Problem author: Lammert Westerdijk

Problem:

Idea:

Observation:

Solution:

Running time:

Bonus:

Bonus 2:

Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Start with the convex hull, and simply verify whether this is a solution.

If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

Need O(nlog n) convex hull algorithm to get O(n®log n). Cubic is too slow.

With monotone chain convex hull algorithm, after O(nlog n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n?) total time.

With a dynamic convex hull data structure, O(nlog n) time is possible.

L: Landgrave

Problem author: Lammert Westerdijk

Problem:

Idea:

Observation:

Solution:

Running time:

Bonus:

Bonus 2:

Statistics: ...

Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Start with the convex hull, and simply verify whether this is a solution.

If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

Need O(nlog n) convex hull algorithm to get O(n®log n). Cubic is too slow.

With monotone chain convex hull algorithm, after O(nlog n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n?) total time.

With a dynamic convex hull data structure, O(nlog n) time is possible.

submissions, ... accepted, ... unknown

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.

Subproblem 1: Create variables and numbers out of letters and digits.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.
Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.

Observation: We need at least k + 1 letters/digits.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Problem:
Subproblem 1:
Subproblem 2:

Observation:
Observation:

Edge case:

Reorder a string to form a syntactically valid expression without redundant parentheses.
Create variables and numbers out of letters and digits.

Join these with operators and parentheses such that no parentheses are redundant.

If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
We need at least k + 1 letters/digits.

If we have only zeros, we need exactly k + 1 of them.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Problem:
Subproblem 1:
Subproblem 2:

Observation:
Observation:
Edge case:

Possible solution:

Reorder a string to form a syntactically valid expression without redundant parentheses.
Create variables and numbers out of letters and digits.

Join these with operators and parentheses such that no parentheses are redundant.

If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
We need at least k + 1 letters/digits.

If we have only zeros, we need exactly k + 1 of them.

Create k numbers/variables using single characters, starting with zeros. Put the
remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd — 0, 0, 1, 2, dcba3
000000001 — 0, 0, 0, 0, 10000

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).
Observation: We can look at the expression as a binary tree, and not care about longer
sums/products. Parentheses are allowed when a (+) is the child of a (*).

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).
Observation: We can look at the expression as a binary tree, and not care about longer
sums/products. Parentheses are allowed when a (+) is the child of a (*).

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Observation: Since each operator can have at most one parent, and has two children, if there are M
multiplication operators and P plus operators, we can place no more than 2M or A
pairs of non-redundant parentheses.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Observation: Since each operator can have at most one parent, and has two children, if there are M
multiplication operators and P plus operators, we can place no more than 2M or A
pairs of non-redundant parentheses.

Solution: Greedily construct as many (_+_)*(_+_) patterns as possible, use (_+_)*_to get rid of
a single pair of parentheses, and put all remaining operators at the end.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and
fill in the tokens.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and

fill in the tokens.

Running time: O(n), or O(nlog n) when sorting the characters.

C: Calculation Obfuscation

Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and

fill in the tokens.

Running time: O(n), or O(nlog n) when sorting the characters.

Statistics: ... submissions, ... accepted, ... unknown

Jury work

= 440 commits (last year: 505)

Jury work
= 440 commits (last year: 505)
= 802 secret test cases (last year: 1228) (= 67 per problem!)

Jury work
= 440 commits (last year: 505)
= 802 secret test cases (last year: 1228) (= 67 per problem!)
= 221 jury + proofreader solutions (last year: 236)

Jury work
= 440 commits (last year: 505)
= 802 secret test cases (last year: 1228) (= 67 per problem!)
= 221 jury + proofreader solutions (last year: 236)

= The minimum! number of lines the jury needed to solve all problems is
44246+1+4+114+3+2+5+2+1+7=148

On average 4 lines per problem, down from 16% in last year's preliminaries?

lWith mostly™ PEP 8-compliant code golfing
2But we did way less golfing last year

The proofreaders The jury

Arnoud van der Leer Ilvan Fefer

Dany Sluijk Jeroen Op de Beek
Geertje Ulijn Jonas van der Schaaf
Jaap Eldering Lammert Westerdijk
Kevin Verbeek Leon van der Waal
Michael Zindorf Maarten Sijm

Pavel Kunyavskiy K Kotlin Hero @ Marijn Adriaanse
Tobias Roehr @ Mike de Vries
Thomas Verwoerd Ragnar Groot Koerkamp
Wendy Yi @ Reinier Schmiermann

Thore Husfeldt
Wietze Koops

Want to join the jury? Submit to the Call for Problems of BAPC 2026 at:

https://jury.bapc.eu/

https://jury.bapc.eu/

