
Benelux Algorithm Programming Contest (BAPC) preliminaries 2025

Solutions presentation

The BAPC 2025 Jury
October 4, 2025

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding c, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.

Case 2: n = c. You can keep your cow by bidding c, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding c, which is optimal.

Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.
Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding c, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding c, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding c, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).
Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.

Exception: If the length of the word is odd, the middle letter can occur an odd number of times.
Solution: Count the number of occurrences of each letter and check whether they are all even,

with at most one odd one out.
Running time: O(n).

Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).
Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).
Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).

Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).
Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).
Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).
• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .

Running time: O(1), but even O(d) will pass.
Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .
Running time: O(1), but even O(d) will pass.

Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).

• Then just compute x
x+y .

Running time: O(1), but even O(d) will pass.
Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .

Running time: O(1), but even O(d) will pass.
Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .
Running time: O(1), but even O(d) will pass.

Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .
Running time: O(1), but even O(d) will pass.

Pitfall: Values are larger than 109, do not use 32-bit int.

Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .
Running time: O(1), but even O(d) will pass.

Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.
Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).

• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .
Running time: O(1), but even O(d) will pass.

Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).

Pitfall: Modifying the sequences themselves by removing characters from the strings can be
unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Journal Publication
Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed
by the previous name part.

Solution: For each author in order, determine the appropriate name part in linear time with a
running minimum.

Running time: Linear in the total size of the input.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Journal Publication
Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?
Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed

by the previous name part.

Solution: For each author in order, determine the appropriate name part in linear time with a
running minimum.

Running time: Linear in the total size of the input.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Journal Publication
Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?
Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed

by the previous name part.
Solution: For each author in order, determine the appropriate name part in linear time with a

running minimum.

Running time: Linear in the total size of the input.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Journal Publication
Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?
Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed

by the previous name part.
Solution: For each author in order, determine the appropriate name part in linear time with a

running minimum.
Running time: Linear in the total size of the input.

Statistics: . . . submissions, . . . accepted, . . . unknown

J: Journal Publication
Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?
Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed

by the previous name part.
Solution: For each author in order, determine the appropriate name part in linear time with a

running minimum.
Running time: Linear in the total size of the input.

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.

Observation: The expected gain of a 0 is 1
2 and that of a 1 is − 1

2 . So when we choose a string with
a zeroes and b ones, the expected gain is (a − b)/2.

Solution: Repeatedly choose the string that maximizes expected gain.
Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.

Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail
on a few testcases.

Running time: O(nq) for q commands.

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.
Observation: The expected gain of a 0 is 1

2 and that of a 1 is − 1
2 . So when we choose a string with

a zeroes and b ones, the expected gain is (a − b)/2.

Solution: Repeatedly choose the string that maximizes expected gain.
Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.

Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail
on a few testcases.

Running time: O(nq) for q commands.

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.
Observation: The expected gain of a 0 is 1

2 and that of a 1 is − 1
2 . So when we choose a string with

a zeroes and b ones, the expected gain is (a − b)/2.
Solution: Repeatedly choose the string that maximizes expected gain.

Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.
Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.
Running time: O(nq) for q commands.

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.
Observation: The expected gain of a 0 is 1

2 and that of a 1 is − 1
2 . So when we choose a string with

a zeroes and b ones, the expected gain is (a − b)/2.
Solution: Repeatedly choose the string that maximizes expected gain.

Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.

Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail
on a few testcases.

Running time: O(nq) for q commands.

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.
Observation: The expected gain of a 0 is 1

2 and that of a 1 is − 1
2 . So when we choose a string with

a zeroes and b ones, the expected gain is (a − b)/2.
Solution: Repeatedly choose the string that maximizes expected gain.

Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.
Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.

Running time: O(nq) for q commands.

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.
Observation: The expected gain of a 0 is 1

2 and that of a 1 is − 1
2 . So when we choose a string with

a zeroes and b ones, the expected gain is (a − b)/2.
Solution: Repeatedly choose the string that maximizes expected gain.

Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.
Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail

on a few testcases.
Running time: O(nq) for q commands.

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Statistical analysis: Out of 100 000 runs, the highest number of commands used is 106.
Lowest number of commands is 34.

Statistics: . . . submissions, . . . accepted, . . . unknown

E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Statistical analysis: Out of 100 000 runs, the highest number of commands used is 106.
Lowest number of commands is 34.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Initial idea: This is a graph problem.
Naive solution: Make a directed graph. If A is a son of B, add a directed edge from B to A.

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.
Initial idea: This is a graph problem.

Naive solution: Make a directed graph. If A is a son of B, add a directed edge from B to A.

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.
Initial idea: This is a graph problem.

Naive solution: Make a directed graph. If A is a son of B, add a directed edge from B to A.

Leon
Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.
Initial idea: This is a graph problem.

Naive solution: Make a directed graph. If A is a son of B, add a directed edge from B to A.

Leon
Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Leon
Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

Issue: Take some spanning tree. What about unused edges?
Fix: Make valid tree by adding an extra person for each unused edge.

Solution: Therefore, we need to find a node that can reach all other nodes.
Issue: n = 105, so we need an O(n)-time solution.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Leon
Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
Issue: Take some spanning tree. What about unused edges?

Fix: Make valid tree by adding an extra person for each unused edge.
Solution: Therefore, we need to find a node that can reach all other nodes.

Issue: n = 105, so we need an O(n)-time solution.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Leon
Marijn

Jeroen

Leon

Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
Issue: Take some spanning tree. What about unused edges?

Fix: Make valid tree by adding an extra person for each unused edge.

Solution: Therefore, we need to find a node that can reach all other nodes.
Issue: n = 105, so we need an O(n)-time solution.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Leon
Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
Issue: Take some spanning tree. What about unused edges?

Fix: Make valid tree by adding an extra person for each unused edge.
Solution: Therefore, we need to find a node that can reach all other nodes.

Issue: n = 105, so we need an O(n)-time solution.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Leon
Marijn

Jeroen

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
Issue: Take some spanning tree. What about unused edges?

Fix: Make valid tree by adding an extra person for each unused edge.
Solution: Therefore, we need to find a node that can reach all other nodes.

Issue: n = 105, so we need an O(n)-time solution.

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.

• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.

• If a “good” node exists, the last node where we started a DFS is “good”.

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon
Marijn

Jeroen

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon
Marijn (1)

Jeroen

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon (2)
Marijn (1)

Jeroen

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon (2)
Marijn (1)

Jeroen

• Check whether this is true using a DFS, starting from this last node.

Running time: O(n).
Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon (2)
Marijn (1)

Jeroen

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon (2)
Marijn (1)

Jeroen

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.
• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.

Leon (2)
Marijn (1)

Jeroen

• Check whether this is true using a DFS, starting from this last node.
Running time: O(n).

Alternative solution: Using strongly connected components.

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Ingredient Intervals
Problem author: Mike de Vries

Problem: There is a sequence of real numbers a = (a1, . . . , an) with a1 + · · · + an = 100 and
a1 ≥ · · · ≥ an ≥ 0. Given a subset {ai}i∈S of these numbers, determine maximal lower
bounds l1, . . . , ln and minimal upper bounds r1, . . . , rn such that

li ≤ ai ≤ ri for 1 ≤ i ≤ n .

E.g., with a = (60, ?, ?, 5, ?):

spam 60
egg

sausage

bacon 5

tomato

I: Ingredient Intervals
Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that ai satisfies l ′
i ≤ a ≤ r ′

i with

l ′
i = max{ aj : j ≥ i , j ∈ S } r ′

i = min{ aj : j ≤ i , j ∈ S } .

spam a1 = 60
egg 5 ≤ a2 ≤ 60

sausage 5 ≤ a3 ≤ 60

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Implementation: These values can be computed in linear time by first computing

prev(i) = max{ j ∈ S : j < i }, next(i) = max{ j ∈ S : j > i } ,

preferably with useful boundary values, for instance by introducing a0 = 100 and
an+1 = 0. Then, for i /∈ S we have l ′

i = aj with j = next(i) because a is decreasing.

I: Ingredient Intervals
Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that ai satisfies l ′
i ≤ a ≤ r ′

i with

l ′
i = max{ aj : j ≥ i , j ∈ S } r ′

i = min{ aj : j ≤ i , j ∈ S } .

spam a1 = 60
egg 5 ≤ a2 ≤ 60

sausage 5 ≤ a3 ≤ 60

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Implementation: These values can be computed in linear time by first computing

prev(i) = max{ j ∈ S : j < i }, next(i) = max{ j ∈ S : j > i } ,

preferably with useful boundary values, for instance by introducing a0 = 100 and
an+1 = 0. Then, for i /∈ S we have l ′

i = aj with j = next(i) because a is decreasing.

I: Ingredient Intervals
Problem author: Mike de Vries

Fix upper bounds: For i /∈ S, the (unknown) amount ai satisfies l ′
i ≤ ai ≤ r ′

i , but we know more:
Assuming all other amounts attain their lower bound, then their sum cannot
exceed 100, so we have the constraint(∑

j<i

max(ai , l ′
j)

)
+ ai +

∑
j>i

l ′
j ≤ 100 ,

Can solve for the largest ai .
spam a1 = 60

egg a2 ≤ 30, because 60 + 30 + 5 + 5 = 100
sausage a3 ≤ 17 1

2 , because 60 + 17 1
2 + 17 1

2 + 5 = 100

bacon a4 = 5

tomato a5 ≤ 5

Implementation: To determine max ai , use binary search in the interval [l ′
i , r ′

i] or rewrite the constraint
for closed formula.

I: Ingredient Intervals
Problem author: Mike de Vries

Fix upper bounds: For i /∈ S, the (unknown) amount ai satisfies l ′
i ≤ ai ≤ r ′

i , but we know more:
Assuming all other amounts attain their lower bound, then their sum cannot
exceed 100, so we have the constraint(∑

j<i

max(ai , l ′
j)

)
+ ai +

∑
j>i

l ′
j ≤ 100 ,

Can solve for the largest ai .
spam a1 = 60

egg a2 ≤ 30, because 60 + 30 + 5 + 5 = 100
sausage a3 ≤ 17 1

2 , because 60 + 17 1
2 + 17 1

2 + 5 = 100

bacon a4 = 5

tomato a5 ≤ 5

Implementation: To determine max ai , use binary search in the interval [l ′
i , r ′

i] or rewrite the constraint
for closed formula.

I: Ingredient Intervals
Problem author: Mike de Vries

Fix lower bounds: Symmetrically, assuming all other amounts attain their maximum bound, then their
sum must be at least 100, so we have the constraint(∑

j<i

r ′
j

)
+ ai +

∑
j>i

min(ai , r ′
j) ≥ 100 ,

Can solve for the smallest ai .

spam a1 = 60
egg 15 ≤ a2 because 60 + 15 + 15 + 5 + 5 = 100

sausage

bacon a4 = 5

tomato

I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown

I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!

• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!

• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.

• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.

• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible
transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).

Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.
Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!
• Define d [i] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.

Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.

Reduction: Take the edge complement, we need to partition the graph into two independent sets
of size k.

Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.

Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.

Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and
end up with a total of exactly k.

Solution: Knapsack dynamic programming!
Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of

exactly s, and 0 otherwise.
Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.

Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.

Solution: Knapsack dynamic programming!
Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of

exactly s, and 0 otherwise.
Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.

Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.

Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj] = 1 or T [j − 1][s − bj] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.

Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a
sharp angle with respect to P, so P can never be part of a solution!

Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!

Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle
from the point set, until we have a solution, or there are less than 4 points remaining.

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.

−1 1 2 3 4 5 6 7

−1

1

2

3

4

5

6

7

0

1 2

5

7

3

6

4

8

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.

−1 1 2 3 4 5 6 7

−1

1

2

3

4

5

6

7

0

1 2

5

7

3

6

4

8

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.
Running time: Need O(n log n) convex hull algorithm to get O(n2 log n). Cubic is too slow.

Bonus: With monotone chain convex hull algorithm, after O(n log n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n2) total time.

Bonus 2: With a dynamic convex hull data structure, O(n log n) time is possible.

Statistics: . . . submissions, . . . accepted, . . . unknown

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.
Running time: Need O(n log n) convex hull algorithm to get O(n2 log n). Cubic is too slow.

Bonus: With monotone chain convex hull algorithm, after O(n log n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n2) total time.

Bonus 2: With a dynamic convex hull data structure, O(n log n) time is possible.

Statistics: . . . submissions, . . . accepted, . . . unknown

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.
Running time: Need O(n log n) convex hull algorithm to get O(n2 log n). Cubic is too slow.

Bonus: With monotone chain convex hull algorithm, after O(n log n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n2) total time.

Bonus 2: With a dynamic convex hull data structure, O(n log n) time is possible.

Statistics: . . . submissions, . . . accepted, . . . unknown

L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.
Running time: Need O(n log n) convex hull algorithm to get O(n2 log n). Cubic is too slow.

Bonus: With monotone chain convex hull algorithm, after O(n log n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n2) total time.

Bonus 2: With a dynamic convex hull data structure, O(n log n) time is possible.

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.

Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
Observation: We need at least k + 1 letters/digits.

Edge case: If we have only zeros, we need exactly k + 1 of them.
Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the

remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.

Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.
Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
Observation: We need at least k + 1 letters/digits.

Edge case: If we have only zeros, we need exactly k + 1 of them.
Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the

remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.

Observation: We need at least k + 1 letters/digits.
Edge case: If we have only zeros, we need exactly k + 1 of them.

Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the
remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
Observation: We need at least k + 1 letters/digits.

Edge case: If we have only zeros, we need exactly k + 1 of them.
Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the

remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
Observation: We need at least k + 1 letters/digits.

Edge case: If we have only zeros, we need exactly k + 1 of them.

Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the
remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.
Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
Observation: We need at least k + 1 letters/digits.

Edge case: If we have only zeros, we need exactly k + 1 of them.
Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the

remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).

Observation: We can look at the expression as a binary tree, and not care about longer
sums/products. Parentheses are allowed when a (+) is the child of a (*).

*

+

+

*

(. . . + . . . + . . .) * . . . * . . .

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).
Observation: We can look at the expression as a binary tree, and not care about longer

sums/products. Parentheses are allowed when a (+) is the child of a (*).

*

+

+

*

(. . . + . . . + . . .) * . . . * . . .

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).
Observation: We can look at the expression as a binary tree, and not care about longer

sums/products. Parentheses are allowed when a (+) is the child of a (*).

*

+

+

*

(. . . + . . . + . . .) * . . . * . . .

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Since each operator can have at most one parent, and has two children, if there are M
multiplication operators and P plus operators, we can place no more than 2M or A
pairs of non-redundant parentheses.

Solution: Greedily construct as many (+)*(+) patterns as possible, use (+)* to get rid of
a single pair of parentheses, and put all remaining operators at the end.

*
+ +

*
+ +

*
+

(((+)*)*(+))*(+) + + + * *

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Since each operator can have at most one parent, and has two children, if there are M
multiplication operators and P plus operators, we can place no more than 2M or A
pairs of non-redundant parentheses.

Solution: Greedily construct as many (+)*(+) patterns as possible, use (+)* to get rid of
a single pair of parentheses, and put all remaining operators at the end.

*
+ +

*
+ +

*
+

(((+)*)*(+))*(+) + + + * *

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and
fill in the tokens.

Running time: O(n), or O(n log n) when sorting the characters.

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and
fill in the tokens.

Running time: O(n), or O(n log n) when sorting the characters.

Statistics: . . . submissions, . . . accepted, . . . unknown

C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and
fill in the tokens.

Running time: O(n), or O(n log n) when sorting the characters.

Statistics: . . . submissions, . . . accepted, . . . unknown

Random facts

Jury work

• 440 commits (last year: 505)

• 802 secret test cases (last year: 1228) (≈ 67 per problem!)
• 221 jury + proofreader solutions (last year: 236)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 2 + 6 + 1 + 4 + 11 + 3 + 2 + 5 + 2 + 1 + 7 = 48

On average 4 lines per problem, down from 16 1
4 in last year’s preliminaries2

Random facts

Jury work

• 440 commits (last year: 505)
• 802 secret test cases (last year: 1228) (≈ 67 per problem!)

• 221 jury + proofreader solutions (last year: 236)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 2 + 6 + 1 + 4 + 11 + 3 + 2 + 5 + 2 + 1 + 7 = 48

On average 4 lines per problem, down from 16 1
4 in last year’s preliminaries2

Random facts

Jury work

• 440 commits (last year: 505)
• 802 secret test cases (last year: 1228) (≈ 67 per problem!)
• 221 jury + proofreader solutions (last year: 236)

• The minimum1 number of lines the jury needed to solve all problems is

4 + 2 + 6 + 1 + 4 + 11 + 3 + 2 + 5 + 2 + 1 + 7 = 48

On average 4 lines per problem, down from 16 1
4 in last year’s preliminaries2

Random facts

Jury work

• 440 commits (last year: 505)
• 802 secret test cases (last year: 1228) (≈ 67 per problem!)
• 221 jury + proofreader solutions (last year: 236)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 2 + 6 + 1 + 4 + 11 + 3 + 2 + 5 + 2 + 1 + 7 = 48

On average 4 lines per problem, down from 16 1
4 in last year’s preliminaries2

1With mostly™ PEP 8-compliant code golfing
2But we did way less golfing last year

Thanks to:

The proofreaders
Arnoud van der Leer
Dany Sluijk
Geertje Ulijn
Jaap Eldering
Kevin Verbeek
Michael Zündorf
Pavel Kunyavskiy Hero
Tobias Roehr
Thomas Verwoerd
Wendy Yi

The jury
Ivan Fefer
Jeroen Op de Beek
Jonas van der Schaaf
Lammert Westerdijk
Leon van der Waal
Maarten Sijm
Marijn Adriaanse
Mike de Vries
Ragnar Groot Koerkamp
Reinier Schmiermann
Thore Husfeldt
Wietze Koops

Want to join the jury? Submit to the Call for Problems of BAPC 2026 at:

https://jury.bapc.eu/

https://jury.bapc.eu/

