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K: Koehandel
Problem author: Mike de Vries

Problem: Your opponent bid c coins, and you have n coins. You get your opponent’s cow when
bidding more than c coins, and lose your cow when bidding less than c coins.
What should you bid to maximize the number of cows you end up with and secondarily
your number of coins?

Case 1: n > c. You can obtain your opponent’s cow by bidding c + 1, which is optimal.
Case 2: n = c. You can keep your cow by bidding c, which is optimal.
Case 3: n < c. You will always lose your cow, so bidding 0 is optimal.

Complexity: O(1).

Statistics: . . . submissions, . . . accepted, . . . unknown
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D: Dralinpome
Problem author: Mike de Vries

Problem: Determine whether a word is a dralinpome.
A word is a dralinpome if there exists a permutation of its letters that is a palindrome.

Observation: Palindromes are mirrored words, so each letter must occur an even number of times.
Exception: If the length of the word is odd, the middle letter can occur an odd number of times.

Solution: Count the number of occurrences of each letter and check whether they are all even,
with at most one odd one out.

Running time: O(n).
Easter egg: Can you find all the dralinpomes in the problem statement?

Statistics: . . . submissions, . . . accepted, . . . unknown
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B: Bottle of New Port
Problem author: Thore Husfeldt

Problem: Compute the amount of alcohol left in a bottle after d days.

Solution: • The amount of alcohol left is x = max(a − d · ∆a, 0).
• For other liquids, it is y = max(o − d · ∆o , 0).
• Then just compute x

x+y .

Running time: O(1), but even O(d) will pass.
Pitfall: Values are larger than 109, do not use 32-bit int.
Pitfall: Many teams forgot the max function, which fails on the fourth sample.

Statistics: . . . submissions, . . . accepted, . . . unknown
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H: Hidden Sequence
Problem author: Mike de Vries

Problem: Given three partial sequences of game winners, each missing one of the three players,
determine the full sequence of winners.

Observation: For each game, even though the winner does not list their name, the other two players
do append the winner to their sequence. The winner of the first/final game is always
the first/final name in exactly two of the sequences. Remove that name from the two
sequences, and iterate.

Solution: Keep track of three indices in the three sequences, iteratively incrementing the two
that agree on their value, and appending that value to the solution.

Running time: O(n).
Pitfall: Modifying the sequences themselves by removing characters from the strings can be

unwantedly slow. Popping characters from the end is fine, but using erase is an O(n)
operation =⇒ O(n2) running time.

However: String operations are extremely optimized, so in practice this often still passes.

Statistics: . . . submissions, . . . accepted, . . . unknown
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J: Journal Publication
Problem author: Ragnar Groot Koerkamp

Problem: Is it possible to pick a name part for each author such that the list is sorted?

Observation: It is always optimal to pick the lexicographically smallest name part that is still allowed
by the previous name part.

Solution: For each author in order, determine the appropriate name part in linear time with a
running minimum.

Running time: Linear in the total size of the input.

Statistics: . . . submissions, . . . accepted, . . . unknown
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E: Entropy Evasion
Problem author: Ragnar Groot Koerkamp

Problem: Repeatedly randomize a consecutive string of bits until at least 70% are 1.

Observation: The expected gain of a 0 is 1
2 and that of a 1 is − 1

2 . So when we choose a string with
a zeroes and b ones, the expected gain is (a − b)/2.

Solution: Repeatedly choose the string that maximizes expected gain.
Implementation: To find this, calculate all prefix sums of expected gains, and take the largest increase.

Pitfall: Off-by-one errors when finding the maximum subarray are hard to debug, and only fail
on a few testcases.

Running time: O(nq) for q commands.
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Statistical analysis: Out of 100 000 runs, the highest number of commands used is 106.
Lowest number of commands is 34.

Statistics: . . . submissions, . . . accepted, . . . unknown
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G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Problem: Determine whether everyone can have the same ancestor.

Initial idea: This is a graph problem.
Naive solution: Make a directed graph. If A is a son of B, add a directed edge from B to A.

Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.
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Naive solution: Output possible if some node reaches all other nodes, and impossible otherwise.

Issue: Take some spanning tree. What about unused edges?
Fix: Make valid tree by adding an extra person for each unused edge.

Solution: Therefore, we need to find a node that can reach all other nodes.
Issue: n = 105, so we need an O(n)-time solution.
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Solution: Therefore, we need to find a node that can reach all other nodes.
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G: Genealogy Gumbo
Problem author: Lammert Westerdijk

Solution: • Loop through all nodes, and run a DFS if not yet visited.

• Once we reach a “good” node, all nodes are marked as visited.
• If a “good” node exists, the last node where we started a DFS is “good”.
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Alternative solution: Using strongly connected components.
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I: Ingredient Intervals
Problem author: Mike de Vries

Problem: There is a sequence of real numbers a = (a1, . . . , an) with a1 + · · · + an = 100 and
a1 ≥ · · · ≥ an ≥ 0. Given a subset {ai}i∈S of these numbers, determine maximal lower
bounds l1, . . . , ln and minimal upper bounds r1, . . . , rn such that

li ≤ ai ≤ ri for 1 ≤ i ≤ n .

E.g., with a = (60, ?, ?, 5, ?):

spam 60
egg

sausage

bacon 5

tomato



I: Ingredient Intervals
Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that ai satisfies l ′
i ≤ a ≤ r ′

i with

l ′
i = max{ aj : j ≥ i , j ∈ S } r ′

i = min{ aj : j ≤ i , j ∈ S } .

spam a1 = 60
egg 5 ≤ a2 ≤ 60

sausage 5 ≤ a3 ≤ 60

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Implementation: These values can be computed in linear time by first computing

prev(i) = max{ j ∈ S : j < i }, next(i) = max{ j ∈ S : j > i } ,

preferably with useful boundary values, for instance by introducing a0 = 100 and
an+1 = 0. Then, for i /∈ S we have l ′

i = aj with j = next(i) because a is decreasing.



I: Ingredient Intervals
Problem author: Mike de Vries

First observation: Since a is nonincreasing, it is immediate that ai satisfies l ′
i ≤ a ≤ r ′

i with

l ′
i = max{ aj : j ≥ i , j ∈ S } r ′

i = min{ aj : j ≤ i , j ∈ S } .

spam a1 = 60
egg 5 ≤ a2 ≤ 60

sausage 5 ≤ a3 ≤ 60

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Implementation: These values can be computed in linear time by first computing

prev(i) = max{ j ∈ S : j < i }, next(i) = max{ j ∈ S : j > i } ,

preferably with useful boundary values, for instance by introducing a0 = 100 and
an+1 = 0. Then, for i /∈ S we have l ′

i = aj with j = next(i) because a is decreasing.



I: Ingredient Intervals
Problem author: Mike de Vries

Fix upper bounds: For i /∈ S, the (unknown) amount ai satisfies l ′
i ≤ ai ≤ r ′

i , but we know more:
Assuming all other amounts attain their lower bound, then their sum cannot
exceed 100, so we have the constraint(∑

j<i

max(ai , l ′
j )

)
+ ai +

∑
j>i

l ′
j ≤ 100 ,

Can solve for the largest ai .
spam a1 = 60

egg a2 ≤ 30, because 60 + 30 + 5 + 5 = 100
sausage a3 ≤ 17 1

2 , because 60 + 17 1
2 + 17 1

2 + 5 = 100

bacon a4 = 5

tomato a5 ≤ 5

Implementation: To determine max ai , use binary search in the interval [l ′
i , r ′

i ] or rewrite the constraint
for closed formula.
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I: Ingredient Intervals
Problem author: Mike de Vries

Fix lower bounds: Symmetrically, assuming all other amounts attain their maximum bound, then their
sum must be at least 100, so we have the constraint(∑

j<i

r ′
j

)
+ ai +

∑
j>i

min(ai , r ′
j ) ≥ 100 ,

Can solve for the smallest ai .

spam a1 = 60
egg 15 ≤ a2 because 60 + 15 + 15 + 5 + 5 = 100

sausage

bacon a4 = 5

tomato



I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown



I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown



I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown



I: Ingredient Intervals
Problem author: Mike de Vries

Tightness: Observe that the improved bounds are tight because the constraints describe valid
values for a.

Combine bounds:
spam a1 = 60

egg 15 ≤ a2 ≤ 30
sausage 5 ≤ a3 ≤ 17 1

2

bacon a4 = 5

tomato 0 ≤ a5 ≤ 5

Running time: O
(
n2 log(100/ε)

)
using binary search.

With precomputing next and prev and solving the constraints: O(n).

Statistics: . . . submissions, . . . accepted, . . . unknown



A: Alto Adaptation
Problem author: Arnoud van der Leer, Maarten Sijm

Problem: By transposing notes to fit your vocal range, maximize the shortest interval of equally
transposed notes.

Solution: Dynamic Programming!

• Define d [i ] as the optimal value if the musical piece ended after i notes.
• Base Case: Let d [0] = ∞.
• Recursion: To calculate d [i ]: for j = i , . . . , 1, keep track of the range of possible

transposals for the notes in [j, i ]. (The range of possible transposals becomes
smaller the further you go back in in the song.)
Then, d [i ] is the maximal value of min{d [j − 1], i − j + 1} of each j with
non-empty transposal range.

Running time: O(n2).
Fun fact: O(n log n) is possible with segment trees, or with binary search on the answer.

Extra fun fact: Linear is possible! This was discovered after the contest. See the jury solutions.

Statistics: . . . submissions, . . . accepted, . . . unknown
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F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.

Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj ] = 1 or T [j − 1][s − bj ] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown
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Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown



F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj ] = 1 or T [j − 1][s − bj ] = 1.

Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown



F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj ] = 1 or T [j − 1][s − bj ] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown



F: Friendly Formation
Problem author: Tobias Roehr

Problem: Partition a graph into two equally sized cliques.
Condition: Need n = 2k and need m ≥ k(k − 1), which gives n ≤ 2(√m + 1) ≤ 2002.
Reduction: Take the edge complement, we need to partition the graph into two independent sets

of size k.
Condition: Each connected component needs to be bipartite.
Reduction: Let component i have parts of size ai and bi . We need to pick one of each tuple and

end up with a total of exactly k.
Solution: Knapsack dynamic programming!

Variables: Let T [j][s] be 1 if we can pick one of each tuple 1, . . . , j and end up with a total of
exactly s, and 0 otherwise.

Recursion: We have T [j][s] = 1 if either T [j − 1][s − aj ] = 1 or T [j − 1][s − bj ] = 1.
Running time: O(n2) = O(m).

Statistics: . . . submissions, . . . accepted, . . . unknown



L: Landgrave
Problem author: Lammert Westerdijk

Problem: Connect some of the given points in a cycle to create a polygon with all interior angles
at least 90 degrees.

Idea: Start with the convex hull, and simply verify whether this is a solution.
Observation: If not, it has a sharp interior angle at some point P. But then all points lie within a

sharp angle with respect to P, so P can never be part of a solution!
Solution: Repeatedly calculate the convex hull and remove the points that make a sharp angle

from the point set, until we have a solution, or there are less than 4 points remaining.
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from the point set, until we have a solution, or there are less than 4 points remaining.
Running time: Need O(n log n) convex hull algorithm to get O(n2 log n). Cubic is too slow.

Bonus: With monotone chain convex hull algorithm, after O(n log n) precomputation sorting
the points, we can recalculate the hull in linear time, leading to O(n2) total time.

Bonus 2: With a dynamic convex hull data structure, O(n log n) time is possible.

Statistics: . . . submissions, . . . accepted, . . . unknown
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C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Problem: Reorder a string to form a syntactically valid expression without redundant parentheses.

Subproblem 1: Create variables and numbers out of letters and digits.
Subproblem 2: Join these with operators and parentheses such that no parentheses are redundant.

Observation: If we have k operators, we need k + 1 numbers/variable tokens regardless of structure.
Observation: We need at least k + 1 letters/digits.

Edge case: If we have only zeros, we need exactly k + 1 of them.
Possible solution: Create k numbers/variables using single characters, starting with zeros. Put the

remaining characters in the last token, making sure to start with letters, then non-zero
digits. Sorting makes it easier, but is not strictly necessary.

00123abcd → 0, 0, 1, 2, dcba3
000000001 → 0, 0, 0, 0, 10000
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C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Parentheses are only allowed when multiplying a sum (e.g. (a+b)*c).

Observation: We can look at the expression as a binary tree, and not care about longer
sums/products. Parentheses are allowed when a (+) is the child of a (*).

*

+

+

*

( . . . + . . . + . . . ) * . . . * . . .
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C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Observation: Since each operator can have at most one parent, and has two children, if there are M
multiplication operators and P plus operators, we can place no more than 2M or A
pairs of non-redundant parentheses.

Solution: Greedily construct as many ( + )*( + ) patterns as possible, use ( + )* to get rid of
a single pair of parentheses, and put all remaining operators at the end.

*
+ +

*
+ +

*
+

( ( ( + )* )*( + ) )*( + ) + + + * *
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C: Calculation Obfuscation
Problem author: Marijn Adriaanse

Complete solution: Count the parentheses, operators, zeros, and other digits/letters, and check all edge
conditions. Construct tokens. Then greedily construct the expression’s structure, and
fill in the tokens.

Running time: O(n), or O(n log n) when sorting the characters.

Statistics: . . . submissions, . . . accepted, . . . unknown
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Random facts

Jury work

• 440 commits (last year: 505)

• 802 secret test cases (last year: 1228) (≈ 67 per problem!)
• 221 jury + proofreader solutions (last year: 236)
• The minimum1 number of lines the jury needed to solve all problems is

4 + 2 + 6 + 1 + 4 + 11 + 3 + 2 + 5 + 2 + 1 + 7 = 48

On average 4 lines per problem, down from 16 1
4 in last year’s preliminaries2
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1With mostly™ PEP 8-compliant code golfing
2But we did way less golfing last year
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